Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser.

نویسندگان

  • Gong-Ru Lin
  • Chao-Kuei Lee
  • Jung-Jui Kang
چکیده

We study the rational harmonic mode-locking (RHML) order dependent pulse shortening force and dynamic chirp characteristics of a gain-saturated semiconductor optical amplifier fiber laser (SOAFL) under dark-optical-comb injection, and discuss the competition between mode-locking mechanisms in the SOAFL at high-gain and strong optical injection condition at higher RHML orders. The evolutions of spectra, mode-locking and continuous lasing powers by measuring the ratio of DC/pulse amplitude and the pulse shortening force (I(pulse)/P(avg)(2) ) are performed to determine the RHML capability of SOAFL. As the rational harmonic order increases up to 20, the spectral linewidth shrinks from 12 to 3 nm, the ratio of DC/pulse amplitude enlarges from 0.025 to 2.4, and the pulse-shortening force reduces from 0.9 to 0.05. At fundamental and highest RHML condition, we characterize the frequency detuning range to realize the mode-locking quality, and measure the dynamic frequency chirp of the RHML-SOAFL to distinguish the linear and nonlinear chirp after dispersion compensation. With increasing RHML order, the pulsewidth is broadened from 4.2 to 26.4 ps with corresponding chirp reducing from 0.7 to 0.2 GHz and linear/nonlinear chirp ratio changes from 4.3 to 1.3, which interprets the high-order chirp becomes dominates at higher RHML orders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study of mode-locked semiconductor optical amplifier fiber ring laser

Based on self-reproduction theory, harmonic and rational harmonic mode-locked semiconductor optical amplifier (SOA) fiber ring lasers have been numerically investigated, respectively. Harmonic mode locking makes a target of obtaining ultra-short pulse. While in rational harmonic mode locking, it is urgently needed to solve that pulse amplitude becomes uneven with the increase of the order of ra...

متن کامل

Optically Injection Mode-Locked 1.3 μm Semiconductor Optical Amplifier Fiber Ring Laser by Using Gain-Switching Single-Mode FPLD

We demonstrate a novel approach for generating a stable and low polarization-sensitive mode-locked fiber ring laser by using a low-cost Fabry-Perot laser diode (FPLD) as both the intracavity mode-locker and the band-pass filter. The FPLD pulses is seeded into a close-loop semiconductor optical amplifier (SOA) based fiber ring laser for harmonic and rational harmonic mode-locking operation. The ...

متن کامل

1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression.

Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-op...

متن کامل

Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers.

The optical gain-depletion-induced mode-locking dynamics of a semiconductor optical-amplifier-based fiber ring laser (SOAFL) backward injected by a purely sinusoidally modulated or digitally encoded distributedfeedback laser diode are theoretically and experimentally demonstrated. The effect of gain depletion and waveform on the mode-locked pulse width, pulse shape, and power of the SOAFL are i...

متن کامل

2-ps, 10-GHz mode-locked laser with semiconductor optical amp, ring cavity, and sinusoidally modulated light injection

In new optical pulse generator using delayedinterference-signal-wavelength-converter (DISC)-type all-optical gate, we injected sinusoidally modulated light to ring cavity. With this way, externally modulated laser oscillation and mode-locked pulse laser oscillation occurred. These generated pulse’s widths and repetition frequencies are 27 ps, 10.5 GHz and 2.1 ps, 10.5 GHz, respectively. Keyword...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2008